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A B S T R A C T

Global sensitivity analysis (GSA) is useful for evaluating the responsiveness of agroecosystem models to input
parameter adjustments. Evaluations of model sensitivity for diverse water status conditions and evapo-
transpiration (ET) algorithms will facilitate better use of models to provide water management recommenda-
tions. The objective of this study was to conduct a GSA to identify influential parameters in the Decision Support
System for Agrotechnology Transfer (DSSAT) Cropping System Model (CSM), specifically using the CROPGRO-
Cotton module with data from cotton field studies conducted in 2000, 2001, and 2008 at Bushland, Texas. The
field studies tested fully-irrigated, deficit-irrigated, and dryland cotton production in a semi-arid environment.
Using high performance computing resources, a GSA was conducted to evaluate the sensitivity of 24 model
outputs with respect to 37 model input parameters. The GSA was conducted for six different ET methodologies
available in the model. With first-order sensitivity indices <0.05, nearly half of the tested input parameters did
not influence any model output for any of the tested simulation scenarios. Among the parameters with first-order
sensitivity indices >0.05, eleven were cultivar parameters that controlled crop development and growth, and five
were soil parameters that specified initial soil water conditions, soil water limits, drainage rate, and root growth
characteristics. The influences of another soil parameter and one ET parameter were relevant only for the ET
methods that required them. Large differences in sensitivity indices were found based on the choice between two
soil water evaporation methods. In addition to providing insights for other applications of this model, the results
specifically informed further efforts to evaluate the model using measured data from the Bushland cotton studies
to compare performance among the six ET methods, as reported in a companion paper.

1. Introduction

Agroecosystem models can simulate the complex, dynamic, and
often nonlinear processes that occur in crop production systems.
However, prior to conducting model simulations, many parameters
(i.e., tens to hundreds) must be specified to describe the soil properties
and crop cultivar characteristics, and weather and management data
must be input for the conditions under investigation. The models also
contain many internal state variables, which are temporally manipu-
lated over a specific time interval by iteratively evaluating the bio-
physical equations incorporated into the model code. The output data
from agroecosystem models have many potential uses, including syn-
thesizing research results, guiding management practices, and in-
forming policy decisions (Boote et al., 1996). However, the sensibility
of the simulation results is often dependent on the modeler’s knowledge

of model output sensitivities as related to model input specifications.
Global sensitivity analysis (GSA) techniques have been developed as a
primary means for agroecosystem modelers to quantify the relation-
ships between model input and output data and increase understanding
of model functionality (Cariboni et al., 2007; Pianosi et al., 2016;
Saltelli et al., 2000). However, GSA studies with agroecosystem models
are not routine, and additional efforts are necessary to improve un-
derstanding of model sensitivity.

A GSA can quantify the variability in model output data with respect
to contributions from individual model input parameters as well as
their interactions. Use of GSA to evaluate agroecosystem models has
increased in recent years. For example, Pathak et al. (2007) used GSA to
evaluate the CROPGRO-Cotton module within the Decision Support
System for Agrotechnology Transfer (DSSAT) Cropping System Model
(CSM) (Jones et al., 2003). They reported that GSA improved their
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understanding of model sensitivities as compared to local sensitivity
analysis alone, mainly because GSA better considered parameter in-
teractions, uncertainty ranges, and nonlinear model responses. They
identified two CROPGRO-Cotton parameters, the specific leaf area
under standard growth conditions (SLAVR) and the duration between
first seed and physiological maturity (SD-PM), which were most influ-
ential on outputs of crop yield and season length, respectively. DeJonge
et al. (2012a) used GSA to evaluate the sensitivity of the CERES-Maize
model for both full and limited irrigation. Results indicated that model
outputs were mostly influenced by crop cultivar parameters with full
irrigation, but soil parameters became more influential with limited
irrigation. The study also demonstrated unrealistic evapotranspiration
(ET) simulations with higher ET for limited irrigation as compared to
full irrigation in some cases, which supported the conclusions of
DeJonge et al. (2012b) that CERES-Maize tended to overestimate ET for
water-stressed conditions. Vazquez-Cruz et al. (2014) used GSA to
evaluate the TOMGRO model, determining that 1) the maximum leaf
area expansion parameter was most influential on the number of nodes
and leaf area index (LAI) and 2) the coefficient of biomass partitioning
was most influential on plant and fruit weights. Liang et al. (2017) used
GSA to evaluate the Water Heat Carbon Nitrogen Simulator (WHCNS),
finding that nitrate leaching was more sensitive to soil hydraulic and
crop parameters than to nitrogen transformation parameters. Finally,
Stella et al. (2014) demonstrated the use of GSA to reduce complexity of
the WOrld FOod STudies (WOFOST) model. These studies demonstrate
the use of GSA to evaluate many aspects of agroecosystem models, in-
cluding impacts of crop, water, and nutrient parameters on simulated
crop development, growth, and yield and on water and nitrogen bal-
ances. Continued efforts are needed to use GSA for understanding the
sensitivity of agroecosystem models with diverse environmental data,
management practices, and algorithm specifications.

Due to the importance of ET simulations for accurate modeling re-
sults, many recent studies have focused on the evaluation, inter-
comparison, and improvement of ET algorithms in agroecosystem
models (Anapalli et al., 2016; DeJonge et al., 2012b; DeJonge and
Thorp, 2017; Kimball et al., 2019; Marek et al., 2016; Marek et al.,
2017; Sau et al., 2004; Thorp et al., 2014b). Related to this effort, Thorp
et al. (2019) described several barriers to making unbiased comparisons
of ET simulation approaches, including human subjectivity in manual
parameter calibration, the complex effects of parameter interactions,
and the lack of statistical comparison approaches. They developed a
methodology for unbiased comparison of ET algorithms and demon-
strated the approach to compare three ET methods in the Cotton2K
agroecosystem model. The simulation workflow involved two main
phases. The first phase involved GSA to identify influential model input
parameters and understand model sensitivities. In a second phase of
simulations, results of the GSA were used to inform a multiobjective
optimization for model calibration, leading to simulation results for ET
algorithm comparison via inferential statistics. Within the Thorp et al.
(2019) methodology, GSA is necessary to eliminate non-influential
parameters from consideration, which simplifies and focuses the mul-
tiobjective optimization only on parameters that have the greatest in-
fluence on model output. Application of this methodology to compare
ET simulations for other agroecosystem models is needed.

The overall goal of the present study was to conduct the first phase
of the Thorp et al. (2019) methodology, which involved GSA to identify
influential model input parameters, identify non-influential parameters,
and understand sensitivities of the DSSAT-CSM CROPGRO-Cotton
model. Six options for ET simulations were considered. Specific objec-
tives were to 1) use GSA techniques to evaluate the sensitivity of 24
model outputs to 37 model input parameters, 2) identify differences in
model sensitivity among six ET simulation options in the model, and 3)
identify differences in model sensitivity for conditions of fully-irrigated,
deficit-irrigated, and dryland cotton (Gossypium hirsutum L.) production
at a field site near Bushland, Texas. The results of the present study
informed a second study that implemented the second phase of the

Thorp et al. (2019) methodology to evaluate ET algorithm performance
against field measurements, which is described in a companion paper
(Thorp et al., 2020).

2. Materials and methods

2.1. Field site

Cotton field experiments to quantify evapotranspiration (ET) of
fully-irrigated, deficit-irrigated, and dryland cotton production were
conducted in four weighing lysimetry fields at the USDA-ARS
Conservation and Production Research Laboratory (CPRL) near
Bushland, Texas (35.187°N; 102.097°W; 1170 m above mean sea level)
during the 2000 and 2001 growing seasons (Howell et al., 2004). Also,
the Bushland Evapotranspiration and Agricultural Remote sensing EX-
periment (BEAREX08) quantified ET for fully irrigated and dryland
cotton production at the same site during 2008 (Evett et al., 2012a).
Evett et al. (2012b) described the weighing lysimeters for ET mea-
surements at Bushland and their relative positions with >110 m fetch
among four fields, which were designated using the intercardinal di-
rection (NE, SE, NW, or SW) of each field location. In 2000 and 2001,
the SE and NE lysimeter fields were managed using full and limited
irrigation, respectively. Full irrigation was defined as weekly irrigation
to replenish root zone soil water content to field capacity, and limited
irrigation was half of the full rate. In the 2008 season, both the NE and
SE lysimeter fields were fully irrigated. The NW and SW lysimeter fields
were not irrigated (dryland production) in 2001 and 2002, and less
than 130 mm was applied in the 2008 early season to encourage ger-
mination and emergence. In all three seasons, irrigation was applied
using a 10-span lateral-move overhead sprinkler irrigation system
(Lindsay Manufacturing, Omaha, Nebraska) equipped with mid-eleva-
tion spray application (MESA) nozzles at a height of approximately
1.5 m above the ground surface. Differences in irrigation management
among the lysimetry fields provided unique environmental conditions
for evaluating sensitivities of the DSSAT-CSM CROPGRO-Cotton model
in the present study.

Meteorological information, including solar irradiance (MJ m−2),
air temperature (°C), dew point temperature (°C), and wind speed (km
d−1), was obtained from a Texas High Plains ET Network weather
station, which was positioned over a well-watered, clipped grass surface
adjacent to the field site. Precipitation data (mm) were obtained from a
tipping bucket rain gauge managed by the experimentalists at the field
site. Growing season precipitation and short crop reference ET from
April through September amounted to 153 and 1324 mm in 2000, 182
and 1244 mm in 2001, and 333 and 1269 mm in 2008, respectively.
Strong regional advection from the south and southwest typically led to
relatively large reference ET values at the site, and deficient pre-
cipitation levels led to water limitation and need for irrigation. Weather
and crop management data from these field studies were used to
parameterize the model for the present study, whereas the initial con-
ditions and soil and cultivar parameters were iteratively adjusted to
conduct a GSA, as discussed later.

2.2. DSSAT-CSM CROPGRO-Cotton

The DSSAT-CSM CROPGRO-Cotton model (ver 4.6.1.003) was
evaluated using GSA techniques with cotton data sets at Bushland,
Texas. The model uses mass balance principles and biophysical process
equations to simulate carbon, nitrogen, and hydrologic processes and
transformations that occur in an agroecosystem. The model operates on
a daily time step, with some subprocesses calculated hourly.
Simulations of cotton development proceed through a series of stages
(e.g., emergence, first leaf, first flower, first seed, first cracked boll, and
90% open boll) based on photothermal unit accumulation from planting
to harvest. Light interception is simulated based on an elliptical
hedgerow canopy, and potential carbon assimilation is computed from
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leaf-level biochemistry equations with growth and maintenance re-
spiration deducted. The model calculates stress effects from deficit soil
water and nitrogen (N) conditions, which further reduce the carbohy-
drate available for simulated plant growth. Assimilated carbon is par-
titioned to various plant parts, including leaves, stems, roots, bolls, and
seed cotton (fiber + seed). Leaf senescence is simulated in response to
natural aging, N remobilization, water deficits, light stress, and phy-
siological maturity. Both deficit and excess soil water conditions lead to
root senescence. Water deficit stress is simulated when the potential
demand for water lost through plant transpiration is greater than the
amount of water supplied by the soil through the simulated root system.
The amount of water supplied by the soil is a function of available
water holding capacity, as defined by model inputs for drained upper
limit and lower limit. The model simulates a layered, one-dimensional
soil profile with a tipping-bucket method for water redistribution and
algorithms for calculating soil and plant N balances. Additional details
about DSSAT-CSM CROPGRO-Cotton can be found in Jones et al.
(2003) and Thorp et al. (2014a,b, 2017).

Six ET simulation methods within the DSSAT-CSM were used in this
study, based on the six possible combinations of three approaches to
estimate potential ET and two approaches to simulate soil water eva-
poration (Table 1). The original ET techniques in DSSAT-CSM included
a Priestley and Taylor (1972) method for potential ET computations
and the Ritchie (1972) method for simulating soil water evaporation. A
second soil water evaporation routine, which calculated upward
movement of water through soil layers in response to ET, was later
added (Suleiman and Ritchie, 2003; Suleiman and Ritchie, 2004;
Ritchie et al., 2009). The Ritchie et al. (2009) method is currently the
default soil water evaporation algorithm in the model, while the
Priestley-Taylor approach remains the default potential ET method.
Since DSSAT v4.0, a method using the Penman–Monteith combination
equation has been available for potential ET calculations. The method
was developed following Eqs. 3–5 in the Food and Agriculture Orga-
nization of the United Nations (FAO) Irrigation and Drainage Paper No.
56 (FAO-56) (Allen et al., 1998). Several formulations of this method
were previously evaluated by Sau et al. (2004), but only one approach
was released with DSSAT. Following several efforts to improve this
potential ET approach (Thorp et al., 2010; DeJonge et al., 2012b; Thorp

et al., 2014b), DeJonge and Thorp (2017) added a separate potential ET
method to the model, which 1) used the Penman–Monteith combination
equation as expressed in Eq. 6 of FAO-56 and as fully documented in the
American Society of Civil Engineers (ASCE) Standardized Reference
Evapotranspiration Equation (Walter et al., 2005) and 2) implemented
an FAO-56 dual crop coefficient method with basal crop coefficients
(Kcb) computed from DSSAT-simulated LAI data. Further details on the
DSSAT-CSM ET methods are provided in the companion paper (Thorp
et al., 2020). In the present study, model sensitivity was evaluated
among all six ET methods in the DSSAT-CSM, hereafter denoted RR, FR,
GR, RS, FS, and GS as described in Table 1.

2.3. Simulation workflow

The simulation workflow for the present study included 1) a Sobol
(2001) sampling scheme to choose large numbers of input para-
meterization options from a high-dimensional parameter space, 2) high-
performance computing to efficiently conduct large numbers of DSSAT-
CSM CROPGRO-Cotton simulations, 3) a database approach to link
input parameter sets with relevant model output data, and 4) a global
sensitivity analysis (GSA) to understand model sensitivities and identify
influential input parameters (Fig. 1). Further details of the workflow
implementation are described in the following sections.

2.4. Sobol sampling

A Sobol (2001) sampling procedure was used to choose high-di-
mensional parameter sets for input to the model. A Python (www.py-
thon.org) script that incorporated the Sensitivity Analysis Library
(SALib) was developed to conduct the Sobol sampling and later to
compute Sobol sensitivity indices for a Sobol GSA (Saltelli, 2002;
Saltelli et al., 2010; Sobol, 2001). As compared to random sampling,
Sobol sampling techniques were previously shown to be advantageous
and more efficient to develop databases that describe high-dimensional
model input and output relationships (Lamsal et al., 2018), because the
Sobol algorithm can select parameter sets that are more evenly dis-
persed across the multidimensional parameter space.

Thirty-seven model input parameters were sampled for inclusion in

Table 1
Summary of six evapotranspiration (ET) options in the Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model (CSM). The six ET
approaches involve the combinations of three methods to estimate potential ET and two soil water evaporation methods, which are specified by changing settings for
the “EVAPO” and “MESEV” parameters, respectively, in the DSSAT-CSM management file.

Short EVAPO MESEV Description
Name Setting Setting

RR R R Potential ET is computed via a Priestley and Taylor (1972) method, requiring only daily solar irradiance and maximum and minimum air
temperatures. Soil water evaporation is computed using the Ritchie (1972) method. These represent the earliest methods in the model, which have
been used most widely.

FR F R “Grass” reference ET is computed using the Penman–Monteith combination equation based on Eqs. 3–5 in FAO-56 (Allen et al., 1998) using fixed
constants for the “grass” reference surface. Potential ET for cotton is computed by adjusting the reference ET using a DSSAT-specific single crop
coefficient as a function of leaf area index. The method requires daily solar irradiance, wind speed, and maximum, minimum, and dew point air
temperatures. Partitioning of potential ET to soil and plant surfaces is based on an exponential function of leaf area index. Soil water evaporation is
computed using the Ritchie (1972) method.

GR G R Standardized short crop reference ET (ETos) is computed using the FAO Penman–Monteith equation based on Eq. 6 in FAO-56 (Allen et al., 1998) and
explicitly following the American Society of Civil Engineers (ASCE) Standardized Reference Evapotranspiration Equation (Walter et al., 2005).
Following DeJonge and Thorp (2017), potential T is computed by adjusting ETos using an FAO-56 basal crop coefficient (Kcb) calculated from leaf area
index, and potential E is computed based on ETos and an FAO-56-based evaporation coefficient. The method requires daily solar irradiance, wind
speed, and maximum, minimum, and dew point air temperatures. Soil water evaporation is computed using the Ritchie (1972) method.

RS R S Potential ET is computed identically to the RR method above. Soil water evaporation is computed using the Ritchie et al. (2009) method. These
represent the current default methods in the model.

FS F S Potential ET is computed identically to the FR method above. Soil water evaporation is computed using the Ritchie et al. (2009) method.

GS G S Potential E and potential T are computed identically to the GR method above. Soil water evaporation is computed using the Ritchie et al. (2009)
method.
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the Sobol GSA (Table 2). Fourteen of these parameters were specified
from the CROPGRO-Cotton “cultivar” file (COGRO046.CUL), which
relate to photothermal durations for cotton growth stages, photo-
synthesis rate, and leaf and boll growth characteristics. Seven para-
meters were specified from the CROPGRO-Cotton “ecotype” file (CO-
GRO046.ECO), which relate to additional photothermal time
requirements, leaf appearance rate, and plant height and width. Eva-
potranspiration parameters were from the CROPGRO-Cotton “species”
file (COGRO046.SPE). Two of the potential ET methods (R and F,
Table 1) used the KEP parameter, which is an energy extinction coef-
ficient to partition potential ET among plant and soil surfaces. Only one
potential ET method (F, Table 1) used the EORATIO parameter, which

increased potential ET as a function of LAI. The third potential ET
method (G, Table 1) used the SKC parameter to compute basal crop
coefficients as a function of LAI and the KMAX parameter to define the
maximum basal crop coefficient (DeJonge and Thorp, 2017), but other
ET methods did not use these parameters. Although these parameters
have unique function among the ET methods, identical parameter va-
lues were tested for EORATIO and KMAX and for KEP and SKC. Re-
garding the soil profile characterization, eleven parameters were spe-
cified from the DSSAT-CSM “soil” file (SOIL.SOL), including the soil
albedo, depth of first-stage soil drying (applicable only for the Ritchie
(1972) soil water evaporation method), soil drainage rate, lower limit
(i.e., wilting point), drained upper limit (i.e., field capacity), saturated
upper limit (i.e., porosity), root growth factors, saturated hydraulic
conductivity, soil bulk density, and initial soil organic carbon. To
simplify and reduce the number of parameters tested in the GSA, the
soil parameters were evaluated for the entire profile and not at the level
of individual soil layers. Thus, for each simulation, identical parameter
values were specified among all the layers in the soil profile. One ex-
ception was the root growth factors, which define the shape of the
rooting profile. Two parameters were created to define the shape: 1)
SRGF1 specified the root growth factor for the top soil layer and 2)
SRGF2 specified the linear rate of root growth factor decline with soil
profile depth. Although SRGF1 and SRGF2 were not specific model
inputs, they were created to simplify the specification of the root
growth factor profiles, based on a linear decrease from the top soil layer
with zero being the lowest possible factor level. Three parameters were
specified from the CROPGRO-Cotton management files (.COX), in-
cluding initial conditions for soil water content and concentrations of
ammonium and nitrate. Similar to parameters in the soil file, identical
initial conditions were specified among all soil layers in the profile to
simplify the GSA.

To sample the parameter space for GSA, the lower and upper bounds
for the DSSAT-CSM CROPGRO-Cotton parameters (Table 2) were based
on experience with the model and examples from input files provided
with the model. The ranges for some soil parameters were based on
measured soil properties at the field site (Tolk et al., 1998). The N
parameter of the Sobol sampling algorithm was set to 158,224 with
specification to prepare for calculation of second-order sensitivity ef-
fects. Thus, the number of n-dimensional parameter sets ( =n 37)
chosen for the Sobol GSA was + =N n(2 2) 12, 025, 024, as defined
within the Sobol algorithm. The value of N was selected based on
preliminary estimates of the rate of simulations via high-performance
computing, with plans to contain the simulation timeframe to within a
couple weeks. Most importantly, as revealed by later tests, the number
of simulations was more than satisfactory to ensure stability of Sobol
sensitivity indices (Saltelli, 2002).

2.5. Simulations

The DSSAT-CSM CROPGRO-Cotton model was set up to run 12 si-
mulation scenarios based on the three cotton growing seasons and four
uniquely-managed lysimetry fields. Simulations were initiated on 1
January of each year and concluded on the recorded harvest date for
each lysimetry field. Additional details on the simulation scenarios are
provided in the companion paper (Thorp et al., 2020).

Simulations were conducted using USDA’s high-performance com-
puting resource called Ceres, which consisted of 64 compute nodes each
having 40 logical cores on Intel Xeon processors with hyper-threading
and a shared 2 PB storage system with Lustre design. The operating
system on Ceres was a Linux CentOS distribution (ver. 6.7). Ceres uses
Simple Linux Utility for Resource Management (SLURM) to submit jobs
to compute nodes. Located in Ames, Iowa, access to Ceres occurred via
the dedicated high-speed networking resource called SCINet.

A Python script that incorporated Python’s “multiprocessing”
package was developed to manage the simulation tasks on Ceres. The
Python script loaded a list of parameter sets into a processing queue,

Fig. 1. Workflow for the “Phase 1” analysis to compare evapotranspiration
methods in the DSSAT Cropping System Model (CSM), including 1) a Sobol
method for sampling 37 input parameters for DSSAT-CSM CROPGRO-Cotton, 2)
model simulations on the Ceres high performance computer (HPC), 3) a data-
base approach to link model input parameters from Sobol sampling to 24 model
output values, and 4) a Sobol global sensitivity analysis using Python’s
Sensitivity Analysis (SALib) module. The “Phase 1” simulation results informed
the “Phase 2” analysis, as reported in a companion paper (Thorp et al., 2020).
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created working directories for conducting simulations in parallel, and
copied pertinent DSSAT-CSM CROPGRO-Cotton files to each directory.
It then established independent worker processes, one for each re-
quested processing core. Each worker process iteratively selected an
item from the processing queue, adjusted model input files to in-
corporate the current parameter set, conducted the 12 simulation sce-
narios, and extracted model output data from model output files.

With 12 simulation scenarios, 6 ET algorithms, and 12,025,024
parameter sets, the Sobol GSA needed a total of 865,801,728 simula-
tions, which required 37,583 CPU hr on Ceres and approximately 188 h
of wall-clock time. Roughly 153 model simulations s−1 were possible
on Ceres, as compared to no more than 8 simulations s−1 on a modern
desktop machine. Thus, high performance computing increased simu-
lation capability by a factor of 20.

2.6. Database method

Model output data were recorded using a database method to link

model input parameter sets with model output responses, similar to the
approach developed by Lamsal et al. (2018) for use of DSSAT-CSM on a
high-performance computer. The approach permitted the simulation
analysis to be conducted and recorded in one step, while the GSA was
conducted in a separate and subsequent step. Twenty-four model out-
puts were recorded for each simulation (Table 3), including the dates of
crop emergence, anthesis, and maturity. Because the GSA was not able
to assess time series responses, crop growth outputs such as LAI, seed
cotton dry matter, canopy height, and others were characterized using
the maximum value from the simulated time series to represent the
overall crop growth response. Regarding the water balance, four ET
metrics were obtained from the model output, including cumulative ET,
transpiration, and soil water evaporation from planting to harvest and
soil water evaporation during the pre-plant fallow period from model
initialization (1 January) to planting. Cumulative deep drainage from
initialization to harvest was also obtained from the soil water balance
output and included in the GSA.

Table 2
The DSSAT-CSM CROPGRO-Cotton parameters included in the Sobol global sensitivity analysis (GSA) with their lower bounds (LB) and upper bounds (UB).
Maximum first-order Sobol sensitivity indices among model outputs are provided for each of six evapotranspiration (ET) methodologies in the model (RR, FR, GR, RS,
FS, and GS) with values >0.05 highlighted in bold, indicating an influential model parameter. Only a subset of the ET parameters were applicable to each ET method.

Parameter Description Bounds First-order Sobol Sensitivity Indices

LB UB RR FR GR RS FS GS

CROPGRO-Cotton crop development and growth
EM-FL Photothermal time - emergence to flowering (°C d) 30.0 50.0 0.91 0.91 0.91 0.90 0.90 0.91
FL-SH Photothermal time - flowering to first boll (°C d) 1.0 15.0 0.11 0.11 0.10 0.09 0.09 0.09
FL-SD Photothermal time - flowering to first seed (°C d) 1.0 20.0 0.19 0.19 0.20 0.19 0.19 0.20
SD-PM Photothermal time - first seed to maturity (°C d) 25.0 55.0 0.44 0.44 0.44 0.43 0.43 0.43
FL-LF Photothermal time - flowering to end leaf (°C d) 55.0 75.0 0.00 0.00 0.00 0.00 0.00 0.00
LFMAX Maximum photosynthesis rate (mg CO2 m−2 s−1) 0.9 3.0 0.11 0.08 0.08 0.12 0.10 0.09
SLAVR Specific leaf area for standard conditions (cm2 g−1) 110.0 190.0 0.06 0.05 0.04 0.08 0.06 0.05
SIZLF Maximum size of full leaf (cm2) 200.0 400.0 0.02 0.02 0.01 0.02 0.01 0.01
XFRT Maximum daily growth fraction partitioned to bolls (%) 0.3 1.0 0.17 0.14 0.12 0.13 0.12 0.11
WTPSD Maximum weight per seed (g) 0.1 0.3 0.00 0.00 0.00 0.00 0.00 0.00
SFDUR Photothermal time - seed filling duration per boll (°C d) 25.0 45.0 0.00 0.00 0.00 0.00 0.00 0.00
SDPDV Average number of seeds per boll, standard conditions (#) 20.0 35.0 0.00 0.00 0.00 0.00 0.00 0.00
PODUR Photothermal time to maximum boll load (°C d) 5.0 20.0 0.04 0.04 0.03 0.04 0.04 0.03
THRSH Ratio of seed cotton weight to boll weight at maturity 60.0 90.0 0.03 0.03 0.03 0.03 0.03 0.03
PL-EM Photothermal time - planting to emergence (°C d) 2.0 12.0 0.99 0.99 0.99 0.98 0.98 0.97
EM-V1 Photothermal time - emergence to first leaf (°C d) 2.0 12.0 0.03 0.03 0.02 0.03 0.02 0.02
FL-VS Photothermal time - flowering to last mainstem leaf (°C d) 20.0 80.0 0.00 0.00 0.00 0.00 0.00 0.00
TRIFL Leaf appearance rate (# °C−1 d−1) 0.1 0.4 0.62 0.61 0.58 0.58 0.58 0.55
RWDTH Width of cultivar relative to standard cultivar 0.7 1.30 0.09 0.10 0.10 0.08 0.09 0.09
RHGHT Height of cultivar relative to standard cultivar 0.7 1.30 0.13 0.12 0.12 0.12 0.13 0.12
OPTBI Minimum daily temperature with no effect on flowering date (°C) 10.0 30.0 0.00 0.00 0.00 0.00 0.00 0.00

Evapotranspiration
KEP Energy extinction coefficient (fraction) 0.5 0.9 0.01 0.01 N/A 0.01 0.01 N/A
EORATIO Ratio of increase in potential ET with LAI (fraction) 0.9 1.3 N/A 0.01 N/A N/A 0.01 N/A
SKC Shaping factor for basal crop coefficient (unitless) 0.5 0.9 N/A N/A 0.02 N/A N/A 0.02
KMAX Maximum basal crop coefficient (unitless) 0.9 1.3 N/A N/A 0.05 N/A N/A 0.03

Soil properties
SALB Soil albedo (fraction) 0.05 0.4 0.00 0.00 0.00 0.00 0.00 0.00
SLU1 Evaporation limit for Ritchie (1972) method (cm) 4.0 20.0 0.11 0.10 0.10 N/A N/A N/A
SLDR Soil drainage rate (fraction d−1) 0.05 0.6 0.04 0.06 0.07 0.41 0.36 0.33
SLLL Lower limit (cm3 cm−3) 0.056 0.196 0.28 0.29 0.29 0.27 0.27 0.28
SDUL Drained upper limit (cm3 cm−3) 0.213 0.353 0.13 0.15 0.16 0.09 0.10 0.11
SSAT Saturated upper limit (cm3 cm−3) 0.370 0.510 0.00 0.01 0.01 0.02 0.02 0.02
SRGF1 Root growth factor in top soil layer (fraction) 0.3 1.0 0.06 0.06 0.06 0.03 0.02 0.02
SRGF2 Root growth factor decline with soil depth (fraction m−1) 0.2 0.8 0.08 0.08 0.08 0.03 0.03 0.03
SSKS Saturated hydraulic conductivity (cm h−1) 0.1 1.2 0.00 0.00 0.00 0.00 0.00 0.00
SBDM Soil bulk density (g cm−3) 1.3 1.6 0.00 0.00 0.00 0.00 0.00 0.00

Initial conditions
SLOC Initial soil organic carbon (%) 0.1 2.0 0.00 0.00 0.00 0.00 0.00 0.00
SNO3 Initial soil nitrate (μg N g−1) 1.0 30.0 0.01 0.00 0.00 0.01 0.00 0.00
SNH4 Initial soil ammonium (μg N g−1) 1.0 12.0 0.00 0.00 0.00 0.00 0.00 0.00
SH2O Initial soil water content (cm3 cm−3) 0.06 0.35 0.33 0.32 0.33 0.47 0.46 0.49
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2.7. Global sensitivity analysis

To gain insights on DSSAT-CSM CROPGRO-Cotton responses to
adjustment of model input parameters, a Sobol GSA (Cariboni et al.,
2007; Pianosi et al., 2016; Saltelli et al., 2000; Saltelli, 2002; Saltelli
et al., 2010; Sobol, 2001) was conducted using algorithms from the
SALib package in Python. Although the Sobol method is more compu-
tationally intensive than other GSA methods, it was chosen due to the
availability of high-performance computing resources, which ensured
efficiency of simulations. Less computationally intensive sensitivity
analyses are normally conducted first; however, only Sobol GSA was
used here, because 1) high-performance computing resources were
available and 2) subsequent comparisons of ET algorithm performance,
as described in the companion paper (Thorp et al., 2020), also in-
corporated the Sobol sampling aspect of the Sobol GSA.

First-order, second-order, and total sensitivity indices were calcu-
lated for each combination of the 37 input parameters (Table 2) and 24
model outputs (Table 3). Median first-order sensitivity indices among 3
cotton growing seasons and 4 lysimeter fields were computed to sum-
marize indices among different environments. Based on the re-
commendation of Zhang et al. (2015), any parameter having a median
first-order sensitivity index >0.05 for any of the 24 model outputs was
considered an influential parameter. Second-order and total order in-
dices were incorporated into discussions of the key results. Because the
main purpose of the Sobol GSA was to analyze model output responses
to variability in model inputs, the results and discussion focus on
comparisons of sensitivity indices among the tested input parameters,
ET simulation strategies, and uniquely-managed lysimetry fields. No
field measurements were included in the present analysis, but details
regarding model comparisons to measured data were provided in the
companion paper (Thorp et al., 2020).

3. Results

3.1. Non-influential parameters

Of the 37 evaluated model input parameters, 18 had no substantial
influence on any of the model output variables (Table 2). Three of these
were related to crop development, including parameters defining pho-
tothermal time from flowering to end of leaf growth (FL-LF), from
emergence to first leaf (EM-V1), and from flowering to the last main-
stem leaf (FL-VS). Additionally, the parameter defining minimum daily
temperature with no effect on flowering date (OPTBI) was not influ-
ential for the Bushland environment. Regarding leaf growth, the para-
meter defining the maximum size of full leaves (SIZLF) was also not
influential. Five parameters related to seed development and growth
were not influential, including the maximum weight per seed (WTPSD),
the photothermal time for seed filling (SFDUR), the average number of
seeds per boll under standard conditions (SDPDV), the photothermal
time to maximum boll load (PODUR), and the ratio of seed cotton
weight to boll weight at maturity (THRSH). First-order sensitivities for
the PODUR parameter were only slightly less than the 0.05 sensitivity
threshold. Regarding ET simulations, neither the KEP, EORATIO, nor
SKC parameters were influential for the ET methods that required them.
Regarding the soil parameters, the soil albedo (SALB), soil bulk density
(SBDM), saturated upper limit (SSAT), and saturated hydraulic con-
ductivity (SSKS) were not influential on any model output. For SSAT
and SSKS, the result was likely because the environment was semi-arid
and irrigation was properly managed, leaving little opportunity for soils
to reach fully saturated conditions. Finally, the initial conditions for soil
organic carbon, soil nitrate, and soil ammonium were not influential on
the model outputs, likely because the field site was fertilized to avoid
nitrogen limitations. The results suggested that nearly half of the model
parameters under investigation (Table 2) require no further discussion,
because none of the 24 model outputs (Table 3) were sensitive to ad-
justment of these parameters. Other GSA studies for different environ-
ments or management practices may reach different conclusions re-
garding these parameters, although the GSA results for DSSAT-CSM
CROPGRO-Cotton by Pathak et al. (2007) for a humid environment in
Georgia were similar to results of the present analysis.

3.2. Influential parameters

The linkages between model outputs and influential input para-
meters provided insights on model functionality (Table 4). Influential
photothermal time parameters functioned as expected, with the pho-
tothermal time from planting to emergence (PL-EM) influencing both
emergence date (EDAT) and anthesis date (ADAT), and the photo-
thermal time from emergence to flowering (EM-FL) influencing ADAT
and physiological maturity date (MDAT). The photothermal time from
flowering to first boll (FL-SH) mainly influenced seed cotton dry matter
(SCDX) and seed numbers (SDNX), while the photothermal time from
flowering to first seed (FL-SD) influenced SDNX and MDAT. Finally the
photothermal time from first seed to physiological maturity (SD-PM)
only affected MDAT. With maximum first-order sensitivity indices
above 0.4 (Table 2), the primary model parameters influencing crop
development were PL-EM, EM-FL, and SD-PM.

Six cultivar parameters related to crop growth were influential on
the simulations (Table 4). The maximum photosynthesis rate (LFMAX)
was influential on leaf dry matter (LDMX), root dry matter (RDMX),
canopy dry matter (CDMX), and the nitrogen stress factor (NSTX) for all
six ET methods; LFMAX was also influential on leaf area index (LAIX),
stem dry matter (SDMX), and soil water evaporation during the
growing season (EVPH) for four or five of the ET methods. The specific
leaf area for standard conditions (SLAVR) was influential only on LAIX
for three of the ET methods (RR, RS, and FS). The maximum daily
growth fraction partitioned to bolls (XFRT) influenced seed number
(SDNX), boll number (BLNX), and boll dry matter (BDMX) among all ET

Table 3
The DSSAT-CSM CROPGRO-Cotton outputs included in the Sobol global sen-
sitivity analysis (GSA)

Output Description Unit

Crop development
EDAT Crop emergence date day of year
ADAT Crop anthesis date day of year
MDAT Crop maturity date day of year
LFNX Maximum leaf number per stem # stem−1

Crop growth
LAIX Maximum leaf area index m2 m−2

LDMX Maximum leaf dry matter kg ha−1

SDMX Maximum stem dry matter kg ha−1

SCDX Maximum seed cotton dry matter kg ha−1

RDMX Maximum root dry matter kg ha−1

CDMX Maximum aboveground canopy dry matter kg ha−1

SDNX Maximum seed number # m−2

BDMX Maximum boll dry matter kg ha−1

BLNX Maximum boll number # m−2

WSPX Maximum water stress factor on photosynthesis fraction
WSGX Maximum water stress factor on growth fraction
NSTX Maximum nitrogen stress factor fraction
CHTX Maximum canopy height m
CWDX Maximum canopy width m
RDPX Maximum root depth m

Evapotranspiration and drainage
ETPH Cumulative evapotranspiration from planting to harvest mm
TRPH Cumulative crop transpiration from planting to harvest mm
EVPH Cumulative soil water evaporation from planting to

harvest
mm

EVIP Cumulative soil water evaporation from initialization to
planting

mm

DRNC Cumulative deep drainage mm
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methods, and SCDX and RDMX were additionally sensitive to XFRT for
three of the six ET methods. The leaf appearance rate (TRIFL) influ-
enced many model outputs among all ET methods, including SDMX,
CDMX, leaf number per stem (LFNX), canopy height (CHTX), and ca-
nopy width (CWDX). Finally, RWDTH and RHGHT influenced only
canopy width and height, respectively. Among cultivar parameters re-
lated to crop growth, LFMAX, TRIFL, and XFRT were most influential
on the simulations, with maximum first-order sensitivity indices ran-
ging from 0.08 to 0.62 (Table 2).

The GSA was informative on the influence of soil water balance
parameters (Table 4). Related to ET, the maximum basal crop coeffi-
cient (KMAX) was required only for the DeJonge and Thorp (2017)
approach for potential ET (G, Table 1) and was influential only on soil
water evaporation (EVPH) and also only when combining this potential
ET method with the Ritchie (1972) approach for soil water evaporation
(GR, Table 1). A similar parameter (EORATIO) required only for the
Penman–Monteith approach for potential ET (F, Table 1) remained non-
influential among the simulations. Also, the evaporation limit para-
meter (SLU1), required only for the Ritchie (1972) evaporation ap-
proach, was influential on soil water evaporation but only during the
period prior to planting (EVIP). The soil drainage rate (SLDR) influ-
enced EVIP and plant transpiration (TRPH), but only when using the
Ritchie et al. (2009) soil water evaporation method (S, Table 1). During
the growing season, SLDR influenced soil water evaporation (EVPH) for
five of six ET methods, excluding RR. Parameters used to compute root
growth factors (SRGF1 and SRGF2) were influential on rooting depth
(RDPX) among all ET methods. Additionally, when the Ritchie (1972)
soil water evaporation method was used, SRGF1 and SRGF2 were
commonly influential on crop growth (LDMX and CDMX); water and
nitrogen stress factors (WSPX, WSGX, and NSTX); and ET calculations
(ETPH and TRPH). Overall, the model was less sensitive to SRGF

parameters when the Ritchie et al. (2009) soil water evaporation
method was used.

The GSA demonstrated high model sensitivity to three water bal-
ance parameters (Table 4). Among all ET methods, the lower limit
(SLLL) influenced LAIX, LDMX, SDMX, CDMX, CHTX, ETPH, and TRPH,
but the drained upper limit (SDUL) influenced only soil water eva-
poration (EVPH and EVIP) and deep drainage (DRNC). When using the
Ritchie (1972) evaporation method (R, Table 1), SLLL was additionally
influential on stress factors (WSPX, WSGX, and NSTX), and SDUL was
additionally influential on ETPH. When using the Ritchie et al. (2009)
evaporation method, SLLL was additionally influential on leaf number
(LFNX), RDMX, BDMX, CWDX, and EVPH, while SDUL was additionally
influential on LDMX, SDMX, CDMX, and TRPH. Importantly, among all
ET methods the initial soil water content (SH2O) influenced 14 of the
24 evaluated model outputs: LAIX, LDMX, SDMX, RDMX, CDMX,
BDMX, WSPX, WSGX, NSTX, RDPX, ETPH, TRPH, EVIP, and DRNC.
With maximum first-order sensitivity indices ranging from 0.09 to 0.49
(Table 2), model inputs for SLLL, SDUL, and SH2O were highly influ-
ential on the model simulations.

4. ET method impacts

Among the four ET metrics (ETPH, TRPH, EVPH, and EVIP), dif-
ferences in model sensitivity among the six ET methods were generally
greater between the two soil water evaporation methods than among
the three potential ET methods (Fig. 2). During the growing season, the
root growth factors (SRGF1 and SRGF2) influenced ET (ETPH) and
transpiration (TRPH) (Figs. 2a and 2b), while leaf growth and devel-
opment parameters (LFMAX and TRIFL) influenced evaporation (EVPH)
(Fig. 2c). In all three of these cases, the first-order and total sensitivity
indices were slightly greater among ET methods based on Ritchie

Table 4
The DSSAT-CSM CROPGRO-Cotton outputs with corresponding influential model inputs, based on Sobol global sensitivity analysis (GSA) with median first-order
Sobol sensitivity indices >0.05 among four lysimeter fields and three cotton growing seasons at Bushland, Texas. Parameters that were influential among all six
evapotranspiration methodologies (RR, FR, GR, RS, FS, and GS) are specified separately from those that were influential for one or more, but not all, methods.

Additionally for individual ET methods

Output All ET methods RR FR GR RS FS GS

EDAT PL-EM
ADAT EM-FL, PL-EM
MDAT EM-FL, FL-SD, SD-PM
LFNX TRIFL SLLL SLLL SLLL
LAIX SLLL, SH2O LFMAX, SLAVR LFMAX, SLAVR LFMAX, SLAVR,

SDUL
LFMAX, SDUL

LDMX LFMAX, SLLL, SH2O SRGF1, SRGF2 SRGF2 SRGF2 SDUL SDUL SDUL
SDMX TRIFL, SLLL, SH2O LFMAX LFMAX LFMAX LFMAX, SDUL LFMAX, SDUL SDUL
SCDX FL-SH FL-SD, XFRT XFRT XFRT
RDMX LFMAX, SH2O FL-SH, XFRT, TRIFL FL-SH, XFRT, TRIFL TRIFL XFRT, SLLL SLLL SLLL
CDMX LFMAX, TRIFL, SLLL,

SH2O
SRGF1, SRGF2 SRGF1, SRGF2 SRGF1, SRGF2 SDUL SDUL SDUL

SDNX FL-SH, FL-SD, XFRT
BDMX XFRT, SH2O EM-FL EM-FL, SLLL EM-FL, SLLL EM-FL, SLLL EM-FL, SLLL
BLNX XFRT, WTPSD, PODUR SH2O SH2O
WSPX SH2O SLLL, SRGF1,

SRGF2
SLLL, SRGF2 SLLL, SRGF2 SLLL, SRGF2 SRGF2

WSGX SH2O SLLL, SRGF1,
SRGF2

SLLL, SRGF2 SLLL, SRGF2

NSTX LFMAX, SH2O SRGF1, SRGF2 SLLL, SDUL, SRGF1,
SRGF2

SLLL, SDUL, SRGF1,
SRGF2

SLLL, SDUL SLLL, SDUL

CHTX TRIFL, RHGHT, SLLL SH2O SH2O SH2O
CWDX TRIFL, RWDTH SLLL SLLL SLLL
RDPX SRGF1, SRGF2, SH2O SLDR
ETPH SLLL, SH2O SDUL, SRGF1,

SRGF2
SDUL, SRGF1, SRGF2 SDUL, SRGF1, SRGF2

TRPH SLLL, SH2O SRGF1, SRGF2 SRGF1, SRGF2 SRGF1, SRGF2 SLDR, SDUL SLDR, SDUL SLDR, SDUL
EVPH TRIFL, SDUL LFMAX, SH2O LFMAX, SLDR, SH2O LFMAX, KMAX, SLDR LFMAX, SLDR, SLLL,

SH2O
SLDR, SLLL, SH2O SLDR, SLLL, SH2O

EVIP SDUL, SH2O SLU1, SLLL SLU1, SLLL SLU1, SLLL SLDR SLDR SLDR
DRNC SDUL, SH2O
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(1972) soil water evaporation (R, Table 1), as compared to the Ritchie
et al. (2009) method (S, Table 1). Median first-order sensitivity of ETPH
and TRPH to initial soil water content (SH2O) were similar (approxi-
mately 0.3) among approaches using the Ritchie (1972) method
(Figs. 2a and 2b). However, for Ritchie et al. (2009), first-order sensi-
tivities of ETPH to SH2O were >0.45 while first-order sensitivities of
TRPH to SH2O were <0.15. The result is likely due to greater ET esti-
mation (i.e., overestimation) by the Ritchie et al. (2009) method, as
described in the companion paper (Thorp et al., 2020). Higher esti-
mation of ET with the Ritchie et al. (2009) method could have made
ETPH more sensitive to SH2O (Fig. 2a), as compared to the Ritchie
(1972) method. Furthermore, greater simulated ET may have led to
increased TRPH sensitivity to SLLL, which was demonstrated with the
Ritchie et al. (2009) method (Fig. 2b).

For soil water evaporation prior to planting (EVIP), differences in
model sensitivity can be explained by the differences in functionality

between the two soil water evaporation algorithms. The EVIP for the
Ritchie et al. (2009) method was generally most sensitive to SH2O and
the soil drainage rate (SLDR), while the soil water limits (SLLL and
SDUL) were less influential on EVIP (Fig. 2d). Due to simulations of
water upflux from the bottom soil layers with the Ritchie et al. (2009)
method, SLDR was more influential on EVIP by counteracting the effect
of upward flux, while the influence of SLLL and SDUL on EVIP was
reduced. In comparison, the Ritchie (1972) method, which simulated
no upflux and restricted evaporation to water content in the top 5-cm
soil layer, demonstrated greater influence of the SLLL and SDUL para-
meters on the EVIP simulation, while the influence of SLDR was much
smaller. As expected, when no upflux was simulated, the impact of
drainage through soil layers was less important for evaporation simu-
lations.

First-order and total sensitivities of leaf area index (LAIX) and ca-
nopy dry matter (CDMX) to SH2O were greater for the Ritchie (1972)

Fig. 2. First-order Sobol sensitivity indices (hashed areas) and total Sobol sensitivity indices (non-hashed areas) among six DSSAT-CSM evapotranspiration methods
(RR, FR, GR, RS, FS and GS), which relate 10 model input parameters to a) cumulative evapotranspiration from planting to harvest (ETPH), b) cumulative plant
transpiration from planting to harvest (TRPH), c) cumulative soil water evaporation from planting to harvest (EVPH), and d) cumulative soil water evaporation from
model initialization (1 January) to planting (EVIP). Median sensitivity indices are shown among three cotton growing seasons and four lysimetry fields.
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evaporation method than for the Ritchie et al. (2009) method. On the
other hand, the opposite trend was found for sensitivities of LAIX and
CDMX to SLLL (Fig. 3a and 3b). This means SLLL was more influential
on plant growth with the Ritchie et al. (2009) method, while SH2O was
more influential on plant growth with the Ritchie (1972) method. By
simulating upflux, the Ritchie et al. (2009) method made LAIX and
CDMX simulations more sensitive to SLLL and reduced the influence of
SH2O. Unexpectedly, seed cotton dry matter (SCDX) was relatively
insensitive to many of the soil water balance parameters (Fig. 3c). The
FL-SH and XFRT parameters were most influential on SCDX, and total
sensitivity indices were >0.4 for FL-SH and FL-SD, which more than
doubled the first-order indices and indicated high interaction with
other parameters. The water stress factor on photosynthesis (WSPX)
also demonstrated high total sensitivity indices for SH2O, SLLL, SDUL,
SRGF1, and SRGF2 (Fig. 3d).

5. Management impacts

Among the four lysimeters, patterns of model sensitivity with re-
spect to irrigation management were observed (Fig. 4). During the
growing season, ETPH and TRPH were sensitive to the root growth
factors (SRGF1 and SRGF2), and the total sensitivity was slightly re-
duced for the fully-irrigated lysimeter (SELYS). This means the effects
of root growth on ETPH and TRPH were less interactive with other
parameters for full irrigation. Furthermore, first-order and total sensi-
tivities of ETPH and TRPH to SH2O both increased with increasing
water deficit due to reduced irrigation. The dryland production systems
exhibited greatest sensitivity of ETPH and TRPH to SH2O, followed by
deficit irrigation and full irrigation (Fig. 4a and 4b). As expected, water
limitations made the model more sensitive to initial soil water condi-
tions. Because the analysis among lysimeters considered only the
DeJonge and Thorp (2017) potential ET method with Ritchie (1972)

Fig. 3. First-order Sobol sensitivity indices (hashed areas) and total Sobol sensitivity indices (non-hashed areas) among six DSSAT-CSM evapotranspiration methods
(RR, FR, GR, RS, FS and GS), which relate 11 model input parameters to a) maximum leaf area index (LAIX), b) maximum canopy dry matter (CDMX), c) maximum
seed cotton dry matter (SCDX), and d) maximum water stress factor affecting photosynthesis (WSPX). Median sensitivity indices are shown among three cotton
growing seasons and four lysimetry fields.
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soil water evaporation (GR, Table 1), sensitivity of TRPH and EVPH to
the maximum crop coefficient parameter (KMAX) demonstrated the
only influence of an ET parameter in this study (Fig. 4b and 4c). Fur-
thermore, because KMAX was used to estimate potential ET, its influ-
ence was greater for the fully-irrigated case with ET nearer to potential.
For deficit irrigation and dryland production, other parameters had
greater influence than KMAX, particularly on EVPH.

Irrigation management also led to different model sensitivities
among several crop growth outputs (Fig. 5). Full irrigation reduced the
influence of SH2O on LAIX, CDMX, and SCDX, while deficit irrigation
and dryland production increased the sensitivity of these outputs to
SH2O. Likewise, the influence of SLLL on LAIX, CDMX, and SCDX was
greater for treatments with water limitation. Similar to the result of
DeJonge et al. (2012a), reduced water inputs from irrigation made the
crop growth outputs more sensitive to initial soil water conditions and

the lower limit. The LFMAX and TRIFL parameters had greater influ-
ence on CDMX with full irrigation as compared to deficit irrigation and
dryland, because these parameters establish potential for leaf growth
under non-stressed conditions. Likewise, XFRT was more influential on
SCDX with full irrigation. The input parameters that set crop growth
potentials, such as LFMAX and XFRT, had greater influence on crop
growth outputs with full irrigation, because soil water contents were
large enough to minimize effects of water stress factors and permit crop
growth calculations at potential rates of growth. However, when water
stress increased due to irrigation restrictions, soil water balance para-
meters became more influential on the crop growth simulation.

6. Second-order indices

Total indices provided insights on the overall impact of parameter

Fig. 4. First-order Sobol sensitivity indices (hashed areas) and total Sobol sensitivity indices (non-hashed areas) among four lysimetry fields (NELYS, SELYS, NWLYS,
and SWLYS) with fully-irrigated, deficit-irrigated, and dryland cotton production, which relate 10 model input parameters to a) cumulative evapotranspiration from
planting to harvest (ETPH), b) cumulative plant transpiration from planting to harvest (TRPH), c) cumulative soil water evaporation from planting to harvest (EVPH),
and d) cumulative soil water evaporation from model initialization (1 January) to planting (EVIP). Median sensitivity indices are shown among three cotton growing
seasons for the GR evapotranspiration method alone.
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interactions on model sensitivity for a given output (Figs. 2–5), while
second-order indices permitted identification of the most influential
parameter pairings. Among the four ET outputs (ETPH, TRPH, EVPH,
and EVIP), second-order indices describing the interaction between
SLLL and SDUL were often >0.05 (not shown), an important result
considering that the relationship between these two parameters de-
termined the plant-available water holding capacity of the soil. Other
common parameter pairings with larger second-order indices for ET
outputs included SLLL with SH2O, SDUL with SH2O, and SLDR with
SH2O (influential only for EVIP with the Ritchie et al. (2009) eva-
poration method), but the indices were rarely >0.08. Water stress fac-
tors (WSPX and WSGX), which demonstrated large total indices relative
to first-order indices (Figs. 3d and 5d), were sensitive to several second-
order parameter interactions, including SLLL with SDUL, SLLL with
SH2O, and SRGF2 with SH2O. The interaction of SDUL with SH2O was
often influential on deep drainage (DRNC) with second-order sensitivity

indices up to 0.34. These were the largest second-order indices in the
study. Among four crop growth outputs (LAIX, CDMX, LDMX, and
SDMX), the pairings of SLLL with SH2O and SDUL with SH2O com-
monly led to second-order indices greater than 0.05 but not exceeding
0.08 (not shown). Finally, the interaction of FL-SH with FL-SD was the
only parameter pairing with a large influence on SCDX, with second-
order indices up to 0.23. Primarily, interactions between the soil water
limits (SLLL and SDUL), initial soil water content (SH2O), and root
growth factors (SRGF2) led to the largest second-order sensitivities
among water balance and crop growth outputs.

7. Discussion

The GSA results demonstrated the sensitivity of the DSSAT-CSM
CROPGRO-Cotton model to a variety of input parameters among six ET
methods for different irrigation management practices during three

Fig. 5. First-order Sobol sensitivity indices (hashed areas) and total Sobol sensitivity indices (non-hashed areas) among four lysimetry fields (NELYS, SELYS, NWLYS,
and SWLYS) with fully-irrigated, deficit-irrigated, and dryland cotton production, which relate 11 model input parameters to a) maximum leaf area index (LAIX), b)
maximum canopy dry matter (CDMX), c) maximum seed cotton dry matter (SCDX), and d) maximum water stress factor affecting photosynthesis (WSPX). Median
sensitivity indices are shown among three cotton growing seasons for the GR evapotranspiration method alone.

K.R. Thorp, et al. Computers and Electronics in Agriculture 177 (2020) 105658

11



cotton growing seasons at Bushland, Texas. Nearly half of the tested
input parameters did not provide first-order sensitivity indices that
exceeded the 0.05 threshold for any of the tested scenarios. For model
users, the information is highly useful to guide efforts toward model
calibration, because the sensitivity indices provide knowledge of the
relative influence of model input parameters on model output re-
sponses. As a result, the guesswork on which parameters to adjust is
minimized, and model calibration can occur with greater intentionality
and focus. As demonstrated in the companion study (Thorp et al.,
2020), the results of this GSA were directly used to reduce the number
of parameters adjusted during model calibration. For model developers,
the GSA results lead to considerations for model design and develop-
ment. Specifically, if a given parameter routinely has little influence on
model outputs, it could potentially be hard-coded and eliminated as an
input parameterization option. Basing these decisions on sensitivity
indices from GSA would provide a quantitative method for simplifying
the interface between models and model users and for ensuring that
model parameterization requirements were not more complicated than
necessary (Stella et al., 2014). Alternatively, model developers may
want to assess the reasons for reduced or enhanced influence among
parameters and consider redesigning model algorithms to ensure
parameter influences follow expectations. Naturally, some system
parameters should be more influential on system outcomes than others,
and GSA can help quantify the influence among parameters and identify
whether their relative influence is sensible. As an initial step, GSA
should be used to simplify model parameterization decisions by iden-
tifying input parameters that have little influence on model outputs.

For the conditions tested in this study, the GSA results identified less
than 20 influential parameters for DSSAT-CSM CROPGRO-Cotton
(Tables 2 and 4). Users should first focus on appropriately simulating
dates of emergence, anthesis, and maturity by adjusting PL-EM, EM-FL,
and SD-PM. The FL-SH and FL-SD parameters were also influential on
crop development, but less so, and data for adjusting these parameters
are usually limited. Using data from well-watered scenarios, leaf de-
velopment and growth can then be fit with adjustments to TRIFL,
LFMAX, and SLAVR, and seed cotton yield can be fit by adjusting XFRT.
Also, crop width and height can be adjusted with the RWDTH and
RHGHT parameters, respectively. Finally, for water limited scenarios,
several parameters affecting the water balance, including SH2O, SLLL,
SDUL, SLDR (for Ritchie et al. (2009) evaporation), and SRGF (for
Ritchie (1972) evaporation) become more important for model cali-
bration efforts. By focusing model calibration efforts on parameters
with greatest influence, these guidelines will improve the applicability
of the model for use in operational agricultural management decisions,
particularly for applications in irrigation management and crop yield
forecasting.

Use of GSA to compare effects of different ET algorithms on model
sensitivity is a novel aspect of this work, and important differences in
model sensitivity were identified among the two soil water evaporation
methods (Ritchie, 1972; Ritchie et al., 2009). Switching between these
two methods radically changed the model sensitivity among both ET
and crop growth outputs (Figs. 2 and 3). In particular, the influences of
several water balance parameters (SH2O, SLLL, SDUL, SLDR, and SRGF)
were substantially affected. As compared to the soil water evaporation
algorithms, the three potential ET methods did not demonstrate much
change to model sensitivity, perhaps because the latter methods es-
tablish only the potential for occurrence of ET whereas the former
methods directly determine model outputs for soil water evaporation.
While the differences in model sensitivity due to potential ET method
appear small, the companion paper demonstrated differences among
the methods with regard to accuracy of ET simulations (Thorp et al.,
2020). When introducing new algorithms, model developers can use
GSA to better understand how model sensitivity and parameter influ-
ences are affected, which can contribute to assessing the sensibility of
model improvements.

8. Conclusions

Global sensitivity analysis (GSA) revealed important relationships
between input and output data with the DSSAT-CSM CROPGRO-Cotton
model. The most influential parameters included five that controlled
crop development (PL-EM, EM-FL, FL-SH, FL-SD, SD-PM), three that
controlled leaf growth or development (LFMAX, SLAVR, and TRIFL),
one that controlled seed cotton yield (XFRT), two parameters that
control canopy height and width (RWDTH and RHGHT), four soil
parameters (SLDR, SLLL, SDUL, and SRGF), and initial soil water con-
tent (SH2O). When using the Ritchie (1972) evaporation method, the
evaporation limit (SLU1) was also influential. When using the DeJonge
and Thorp (2017) ET method with the Ritchie (1972) evaporation
method, the maximum basal crop coefficient (KMAX) was influential.
The GSA was very useful for identifying influential model parameters,
which can lead to simplified model parameterization decisions during
calibration efforts. The results should be informative to others using the
DSSAT models, particularly for crops based on the CROPGRO module.
Additionally, as reported in a companion paper (Thorp et al., 2020), the
GSA results have informed a second stage of analysis, which involved
fitting the model to measurements via multiobjective optimization and
comparing the performance of the six ET methods among various
measured and simulated agroecosystem variables.
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